Gaussian Radial Basis Functions for Simulation Metamodeling
نویسندگان
چکیده
This paper presents a novel approach for developing simulation metamodels using Gaussian radial basis functions. This approach is based on some recently developed mathematical results for radial basis functions. It is systematic, explicitly controls the underfitting and overfitting tradeoff, and uses a fast computational algorithm that requires minimal human involvement. This approach is illustrated by developing metamodels for the M/M/1 queueing system.
منابع مشابه
Stable Gaussian radial basis function method for solving Helmholtz equations
Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems. They are often referred to as a meshfree method and can be spectrally accurate. In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion. We develop our approach in two-dimensional spaces for so...
متن کاملNovel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملRBF-Chebychev direct method for solving variational problems
This paper establishes a direct method for solving variational problems via a set of Radial basis functions (RBFs) with Gauss-Chebyshev collocation centers. The method consist of reducing a variational problem into a mathematical programming problem. The authors use some optimization techniques to solve the reduced problem. Accuracy and stability of the multiquadric, Gaussian and inverse multiq...
متن کاملComparative Studies of Metamodeling Techniques Under Multiple Modeling Criteria
Despite advances in computer capacity, the enormous computational cost of running complex engineering simulations makes it impractical to rely exclusively on simulation for the purpose of design optimization. To cut down the cost, surrogate models, also known as metamodels, are constructed from and then used in place of the actual simulation models. In the paper, we systematically compare four ...
متن کامل